SEMCO/SEMCOLD LLC is committed to providing top quality industrial cooling and freezing systems. These systems are perfect for a wide range of different industrial and commercial applications. However, by far one of the common uses for our cooling equipment is the preservation of fresh seafood caught offshore by commercial fishermen. That is why SEMCO/SEMCOLD LLC is so excited to announce that one of our customers, Buddy Guindon and his family, will be starring in a new reality TV show called “Big Fish Texas” that will begin airing on the National Geographic Channel on February 3rd.

About “Big Fish Texas”

The first season of “Big Fish Texas” will consist of eight episodes and will track the Guindon family as they gear up, bait hooks, and go out to sea in the Gulf of Mexico in search of red snapper, grouper, golden tilefish, and others for their fresh fish seafood market. The family runs Katie’s Seafood Market on Galveston Island, a business named after Buddy Guindon’s wife, Katie.

In addition to Buddy and Katie Guindon, the series will also feature their four sons who are also involved in the family business and range in age from 15 to 33 years-old. Buddy’s brother and his wife will also be featured as will Buddy’s father, Greg. Filming of the first season of eight episodes has already wrapped up and there could be future seasons if the show is well-received by audiences.

The Guindons’ Commitment to Sustainability

A big focus of the show will be the Guindons’ commitment to sustainability and environmentally responsible commercial fishing, a cause so important to Buddy Guindon that he has testified before congress about the importance of seafood conservation. Guindon is also a founding member of the Shareholders Alliance, whose mission is seafood conservation. This is an extremely important and timely issue as more and more overfishing is being done worldwide, threatening the ecosystem and the future of fresh seafood.

SEMCO/SEMCOLD LLC is happy for the Guindons’ success and we are very excited to see the show, which will be premiering on the National Geographic Channel on February 3rd. We are honored to supply the Guindons with quality industrial cooling equipment they can use for their business. Please tune in with us and watch their adventure unfold.

No matter how large the catch may be, if a fishing ship doesn’t have an effective cooling system that catch will spoil before making it back to the harbor. The most cooling methods involves using various forms of ice. There are many different types of ice that may be used, but in today’s article let’s take a look at block ice and its proper handling. Block ice is preferred by many fishermen because of it lasts longer than pre-crushed or flake ice and because it is easier to store in that larger quantities can be stowed in smaller spaces than other forms of ice.

Proper Storage and Handling of Block Ice

Before being used to preserve the freshness of the catch, block ice must be stored and handled in a safe and hygienic manner. The most important point to remember is that block ice must be made from either potable water or clean sea water. Harbor water should never be used to produce ice blocks because of the contaminants left behind by the fishing vessels that come and go from the port.

Once you’ve purchased or made the proper quality of ice, the blocks will need to be stored aboard ship in a refrigerated chamber until such time as they will be used. A variety of SEMCO/SEMCOLD LLC cooling and storage systems offer the necessary insulation and seamless construction to ensure that a proper temperature is maintained. Only authorized personnel should be allowed to handle ice blocks in order to keep the ice as clean and pure as possible. Persons handling the ice should always wear rubber boots and rubber gloves to limit the spread of bacteria and other contaminants that could be transferred from the ice to the catch.

Proper Usage of Block Ice

Freshly caught fish should be frozen as quickly as possible to maintain freshness; however, to freeze it effectively, the fish must be completely surrounded by ice to prevent air from drying out the flesh. In order to accomplish this, ice blocks need to be crushed prior to use. The ice must be crushed as finely as possible because a smaller crush has a better likelihood of contacting the entire surface of the fish. Freshly crushed ice should be applied immediately to the fresh catch. If the ice is crushed in advance, it will melt more quickly causing unmanageable clumps to form. Crushed ice can become virtually unworkable after 24 hours, which is why most commercial fishing ships prefer to carry block ice that can be crushed on demand. Many fishing ships carry an on-board mechanical grinder, like the ice systems offered by SEMCO/SEMCOLD LLC, in order to crush ice blocks more efficiently.

Successful fishing expeditions require three things in terms of ice handling and preparation:

  1. Clean ice
  2. Proper refrigeration
  3. Appropriate tools

From pristine block ice to top quality ice systems or industrial cooling and storage systems, SEMCO/SEMCOLD LLC makes it easy to maintain a clean, fresh catch from sea to shore. Our systems are also fully customizable and designed to each customer’s particular specifications. Let us help you maintain optimal fish quality and freshness.

In industries where concrete is used, it is important for workers to understand the extreme importance of properly concrete cooling. If proper cooling methods are not used, a number of problems can occur, including a weaker finished product that is irregular and more susceptible to cracks and other damage. In addition, temperatures that are too high can interfere with the chemical process involved when cement becomes concrete. In this article let’s explore 4 serious problems that can be caused by improperly cooled concrete.

Improper Concrete Cooling Is Often Weaker

Concrete that has been created under overly high heat conditions is not as strong as it could be. The process of hardening concrete is called curing, and generally when concrete is cured at temperature above 70 degrees Fahrenheit, the strength and resilience of the concrete is greatly reduced. This is due to the chemical reaction that happens when concrete is formed. Temperatures that are too high can speed this process up, which does not allow for proper crystal formation within the material. This can be a disaster in many industries where durable, reliable materials are required.

Improperly Cooled Concrete Is often Irregular

When concrete is poured over a very large area and is prepared at temperatures that are too high, this can lead to an irregular material that is weaker in some places than it is in others. This is because of the temperature differentials caused by a concrete creation process that is too hot, and thus, goes too fast. In the same way that weak concrete is a hazard, uneven concrete poses similar risks, especially when the project is of the large-pour type. In these cases, central areas of the concrete may be a drastically different temperature than outer areas.

Improperly Cooled Concrete Is in More Danger of Cracking

Weak concrete is a very real problem. If concrete is less dense because of poor cooling practices, it can be more susceptible to cracking. Depending on the location of the concrete, this can possibly be catastrophic and could result in major accidents, injuries, costly property damage, and facility outages as the damage is repaired. Any industry where extremely strong, hardy concrete is required, a cracking hazard can be dangerous and costly.

Improperly Cooled Concrete May Not Undergo Full Hydration

To understand this negative outcome of improper cooling, one needs to understand first how concrete is formed. Concrete starts with a mixture called cement, which, when combined with water, undergoes a chemical transformation and becomes concrete. This process is called hydration. When temperatures are too high some of the water needed for the hydration process is in danger of evaporating, leaving some of the concrete un-hydrated.

There are a wide variety of ways that you can properly cool concrete to avoid any of these negative outcomes. Different concrete cooling methods involve different processes and equipment and may range in complexity from simply using colder water to full-scale post-pour cooling using a network of pipes inside the pour concrete – and many other techniques in between. The good news is that regardless of how large the project is, the concrete absolutely CAN be fully and adequately cooled, improving its quality and durability. SEMCO/SEMCOLD LLC designs and manufactures high quality, customizable concrete cooling systems. Contact us for more information and to discuss your concrete cooling needs.

Commercial fishermen know that it is crucial to preserve their catch in order to provide a good product for consumers and realize a profit. Once the fish are brought on board, SEMCO/SEMCOLD LLC helps them meet storage and cooling challenges with a range of refrigeration options, including cooling equipment and the ice form that is most appropriate for the size and type of fish caught. Cooling systems can be designed to suit the customer’s needs as well as the space available, often resulting in greater efficiency and reduced operating costs. In fact in the long run cooling systems pay for themselves aboard fishing ships. Let’s take a look at how.

Cooling Systems Maintain the Quality of a Catch

Given that fish are prone to rapid spoilage, the first consideration is always keeping a catch fresh; it is essential that fish bound for market are completely free of harmful parasites, chemicals or bacteria. They should have shiny skin, clear eyes and a fresh smell. In addition to the use of ice and refrigeration equipment, the ship’s hold must be well insulated. Several kinds of insulation are available, including the following:

  • Polyurethane foam, a man-made polymer
  • Polystyrene sheets, better known as Styrofoam
  • Fiberglass, which is fire and heat resistant
  • Cork board, once among the most popular of the insulating materials
  • Organic materials such as sawdust and straw

The type of insulation used will have much to do with temperature control and energy cost reduction.

Cooling Systems Keep Holds Property Chilled

Once caught, fish must quickly be put on ice. Many fishing vessels are small with limited space for ice storage. In addition, the boats might not be headed back to port immediately, so the proper type and size of refrigeration unit is very important. SEMCO/SEMCOLD LLC manufactures and installs industrial cooling systems designed to customer specification. The system chosen will provide the level of refrigeration required for the type of insulation that has been installed in the ship’s hold.

Cooling Systems Preserve Seafood in Clean Ice

The ice used to store the catch on fishing boats must be kept clean and preserved in such a way that it cannot contaminate other seafood. Human handling of fish may bring bacteria into the environment. Ready-made clean ice is available from SEMCO/SEMCOLD LLC in addition to efficient, cost-saving icemaker units. Also available is a water filtration system to ensure that the ice being used to preserve the catch is kept clean and organism free.

Different Fish Require Different Cooling Units

Different kinds of methods are used to cool and store fish, depending on their size and individual qualities:

Small Fish – In many parts of the world, small fish such as sardines are considered a delicacy, but they are apt to spoil more easily than larger fish because they have fewer layers of protection. On the other hand, they cool faster and stay cool more easily when stored in a well-insulated container. A combination of ice and chilled sea water is effective for cooling down a fresh catch.
Medium-Sized Fish – Cod, salmon, mackerel and tilapia are all examples of medium-sized fish that are important to commercial fisherman because of their culinary popularity. They are not as prone to spoilage as small fish and they remain cool longer than large fish. Proper preservation requires that the surface area of the fish be completely covered by ice.
Large Fish – Due to their size, it is recommended that large fish such as tuna, halibut or mahi-mahi be gutted before cooling and flake ice, which cools faster than slush ice, be placed inside the bellies and around the outside of the fish.

Cooling Systems Preserve the Integrity of Seafood Companies

A seafood company’s good reputation depends upon the high quality of its products. SEMCO/SEMCOLD LLC provides the refrigeration options that enable commercial vessels to bring fish directly from the ocean to the packing and transportation companies that will see the products delivered—still fresh and tasty—to markets and restaurants all over the world.

Whether you are seeking to preserve meat products, fresh produce, or any other commercial products that needs to be cooled, choosing the right kind of ice for your application is essential. Block, flake, and slush ices each offer their own unique advantages and disadvantages, including variances in availability, melting speeds and space efficiency. When combining the proper ice type with the capability of SEMCO/SEMCOLD LLC custom-designed cooling systems, you’ll be assured of product integrity throughout the storage process. Let’s take a look at some of the most common types of ice and when they might be useful for a given application.

Block Ice

If space limitations exist or you’re seeking a slower-melting option, block ice may be an ideal choice. Keep in mind that blocks must usually first be crushed in order to be used for actual food storage purposes, as a flat slab would not have the ability to surround non-standard shapes and thus provide proper cooling. Block ice does also provide the benefits of widespread availability and maximum space efficiency, as there is no empty container space as when carrying flake or slush types.

Conversely, it must be noted that properly crushing block ice can be a labor-intensive process, and without the right kind of equipment, it may not be possible at all. When blocks are not broken down into small enough pieces, you can run the risk of inadequate cooling performance (due to insufficient surface contact) as well as product damage which can result from larger, sharper chunks of ice.

Traditional tools can be utilized to break down ice in block form, such as picks and hammers, but this is potentially inefficient and can even be unsafe. If choosing this ice type as part of your preservation strategy, keep in mind that SEMCO/SEMCOLD LLC crushers are a convenient and efficient means of outputting ideal, consistent crushed ice, both for transportation and general storage needs.

Flake Ice

There are a few immediate benefits of flake-style ice versus blocks. For starters, manual crushing is not necessary, as flake ice is sold in a ready-to-use state. Its natural shape allows it to fit easily around stored food such as fish and as it melts, it creates a kind of natural skin which aids in decelerating the melting of any ice below.

Additionally, with greater overall surface area than many other types, flake ice is able to cool product more quickly when compared with some of the competition. This type of ice is easy to transport and store, and it helps to prevent introduction of bacteria which can result when relying on other methods of refrigeration.

By contrast though, this type of ice is less space-efficient than several other varieties, particularly when compared to block form. Potential caking can occur at the bottoms or sides of your storage areas as well, and while more surface area does provide faster cooling potential, it also tends to melt more quickly. SEMCO/SEMCOLD LLC recommends the use of this flake ice when ample space is available and when crushing block ice is either impractical or impossible.

Slush Ice

As the name suggests, slush is a combination of ice and water, which combine to create a cooling method that’s both efficient and adaptable. The liquid component helps to ensure that slush ice will completely fill in any spaces between food products, regardless of the size of your holding area. This is also a preferred method of cooling while retaining your product’s natural moisture.

As with other varieties, certain drawbacks do exist for slush ice. For example, the overall liquidity level must be monitored constantly in order to ensure that too much ice does not melt, resulting in temperatures too high for safe food storage. SEMCO/SEMCOLD LLC has also found that micronutrients and pigment can be sapped from fish stored in water, possibly necessitating use of a dry cooling method instead.

Overall Comparison

In the end, each type of ice offers many similar benefits and drawbacks. In order to protect your product and profitability, you must be sure to select the type that’s best suited to your environment and application:

  • For the greatest overall efficiency in terms of space usage and melting speed, block ice makes a good choice. Keep in mind the additional labor and/or equipment necessary to produce crushed ice.
  • Fast cooling, ample moisture retention and ease of use are some of the primary benefits of flake ice. However, be aware that this type does melt more quickly and typically requires larger storage spaces.
  • Choose slush ice when strong moisture retention is desired or when you must ensure thorough contact with all food products being stored or transported. Bear in mind that liquidity must be steadily monitored and fish pigment or micronutrients may be drained to some extent.

SEMCO/SEMCOLD LLC is an industry leader in industrial and commercial cooling systems, providing the technology to preserve a variety of perishable commodities safely and effectively. We provide everything from ice bins and scales to crushers, blowers and hydro coolers, serving companies working throughout each stage of the supply chain. Our systems can be built and installed to meet your custom specifications, making it possible to address virtually any needs in the world of commercial ice storage and transportation.

If your industry involves concrete work, you are already aware of the importance of having concrete properly cooled before it hardens, or cures. Because the process of mixing cement with water to obtain concrete is a chemical process that releases heat, concrete will be very hot unless it is cooled through a specially designed system. Let’s take a look at some factors that could indicate it is time to upgrade or replace your current concrete cooling system, but first let’s also take a quick look at why concrete cooling is necessary.

Why Is Concrete Cooling Necessary?

Concrete that cures at higher temperatures will be less dense, since the heat will cause greater expansion; since heat distribution tend to be uneven, the concrete’s density will also be uneven. High temperatures also cause water to evaporate faster, leading to insufficient hydration of the concrete and a reduction in tensile strength. These two factors cause weaker, more brittle concrete; in industrial settings, where concrete strength is essential, this flaw can be disastrous. For this reason, companies engaging in concrete construction and other concrete projects use concrete cooling systems such as those manufactured by SEMCO/SEMCOLD LLC to bring their concrete to an appropriate temperature.

Concrete Cooling Methods

There are several types of cooling systems and methods available today, each of which has its own set of advantages and disadvantages. The simplest method is adding cold water and ice to the water that will be mixed with the cement. This method requires calculating the necessary temperatures based on the quantity of material. Using a cooling system to bring the water’s temperature down is quicker and more efficient, especially in the case of larger quantities. Water cooling is achieved by flooding the silos with cold water and draining them once the mixture is cooled, which uses a lot of space and is wasteful of water. Another effective method is the wet belt system, which uses small amounts of ice water transported by conveyor belts.

Another way of cooling the concrete components, or aggregate, is via cold air that is circulated throughout the materials. This method takes more time than cooling the water, but is optimal in small, enclosed spaces since it doesn’t require a separate system of removing the water.

Air and water cooling are often supplemented by sand cooling to ensure that the mixture’s temperature stays cool throughout the process. Sand cooling is particularly useful for large projects. Sand cooling systems may include rotary cooling drums or sand silos. This method has the advantage of achieving cooler temperatures for longer times, at lower energy costs; however, it involves expensive equipment and more time in order to cool the sand.

A less frequent method is post-pouring cooling, which involves laying pipes before the concrete is poured, then sending cold water to circulate through the pipes after they are covered with the concrete. This method is very expensive and time-consuming. Typically, it is only employed for supersized projects like dams or highways.

No matter which concrete cooling system you have in place, it is highly important to ensure that it stays in good working order. It is crucial that it be repaired or replaced as necessary and that maintenance concerns are not ignored.

Risks of Inadequate Cooling

One of the clearest indicators that it could be time to replace your concrete cooling system is if the concrete is being inadequately cooled. A suboptimal system will produce inferior concrete, create potential safety concerns, and raise energy costs. If you find that your concrete quality is not up to standards, especially with what you expect from your cooling system, that is a clear indicator it’s time to make some changes.

Frequent Repairs

Going hand-in-hand with inadequate cooling as a key indicator of the need to upgrade your system, is frequent repairs. While regular maintenance is a must, and periodic repairs may be routine, an uptick in problems and rising maintenance costs can indicate that your system is nearing the end of its life. Eventually repairs or part replacements won’t be able to fully fix an issue or will be needed far too often to be cost effective. It is thus essential to know when it is time to replace your system entirely. Eventually the cost of repairs will outweigh the cost of purchasing a new system, especially if frequent breakdowns delay your projects’ schedules and overall productivity.

Outdated Technology

How long have you been using the same cooling system? With today’s rapid advances in technology, it may be time to see if a newer system will meet your needs better. Improvements in energy efficiency, precise temperature calibrations, and delivery mechanisms can make a new customized SEMCO/SEMCOLD LLC system a worthwhile investment.

Rising Energy Costs

Take a look at your energy. If your system is using increasingly more water and energy to obtain the same results, it is a sign that it is deteriorating. Not only will increasing utility costs soon outweigh the expense of a new system, but continuing to use a decreasingly functional system will inevitably compromise the quality and integrity of the concrete. A system with poor energy efficiency can also be a major black eye for a company that wants to market itself as energy or eco-friendly.

Subpar Performance

Always monitor your system’s performance, carefully checking that your concrete has been cooled to its appropriate temperature. Consistent failures to achieve goal temperatures, or taking increasingly longer to achieve them, are indications that your system is no longer coping with its workload. Whether your system has deteriorated, or its workload has changed or increased, this is a clear sign that it is no longer the right system for you.

Changing Needs

Finally, if your company has dramatically changed the quantity or nature of its concrete projects, it may be time to reconsider whether your existing equipment is still the most appropriate. Do not let inertia carry you along into continuing to use older equipment just because it still works. If the direction of your company is changing, it may be time to look into a new SEMCO/SEMCOLD LLC concrete system that will be fully customized to your current needs.

There are a variety of industries that involve food like meat and poultry, produce, or seafood. No matter which of these food-related industries you work in, you need to think about how to keep the materials at the proper cold temperature to avoid food spoilage and the growth of bacteria. When food is your business and your income, it is paramount that you have the proper industrial cooler or freezer. Fortunately there are many quality option these days for how to keep food at the proper temperature. Regardless of what you need to refrigerate, what your budget is, and what your space limitations are, there is likely an industrial cooler or freezer that is right for you. When you are ready, we at SEMCO/SEMCOLD LLC can help provide you with the right cooling unit. Here are a few different options for you to consider.

Indoor vs. Outdoor Coolers and Freezers

Two basic options for cooling solutions are indoor and outdoor coolers and freezers. These two options each have their own advantages and disadvantages and one may suit your needs better than the other. At SEMCO/SEMCOLD LLC, we have knowledgeable professionals that can help you take stock of your situation.

Outdoor options can be a great choice if you already have a level area to position the unit and if you live in an area that is not excessively hot, which would require you to do more work to make sure that the unit was not overly exposed to the heat. If there are not area building codes in place that impede the installation of an outdoor unit, this choice can free up more space inside your facility, eliminate the extra indoor heat created by the unit and may be a lower price option if you do not choose a highly customized cooler or freezer.

Indoor units, on the contrary, may take up more space and result in a higher building temperature, when can drive up your energy costs. However, if theft is a concern to you or if you require very easy access to the items inside your cooler or freezer, indoor may be the way to go. Indoor options are also less susceptible to environmental concerns like excessive outdoor heat or other weather concerns. Remember that indoor options also cost less than outdoor units, on average. We at SEMCO/SEMCOLD LLC recommend talking to one of our professionals to assess whether an indoor or outdoor option is better for you.

Different Sizes for Industrial Freezers and Coolers

When you decide whether you need an indoor cooling unit or an outdoor cooling unit, you will then need to figure out what size unit you require. If you have an indoor unit, much of this decision may be made for you based on available space. Outdoor units often offer more flexibility in this area. Generally, the smallest walk-ins are about 15 cubic feet, while larger ones can be up to 400,000 square feet. A good rule of thumb to keep in mind when determining your space requirements is that 1 cubic foot of space can hold roughly 28 pounds of food. However, naturally this varies widely depending on the type of product you are refrigerating and your overall setup.

New Technologies in Industrial Cooling

With modern technological advancements in coolers and freezers, there are many available options that allow for a better performing unit that lasts longer and is more energy efficient. Consider which of these options will benefit your business and result in less maintenance and fewer unneeded costs. Some of these high-tech upgrades include:

  • Advanced door technology to avoid hinge problems
  • Alarms that monitor temperature and produce alerts when there are problems
  • LED lighting
  • Motion sensor lighting technology
  • Bluetooth connectivity

Contact us at SEMCO/SEMCOLD LLC to find out more details about available cooling units and various options.

Food preservation technology has come a long, long way from the days when people used salt to keep food from spoiling. These days it is possible to find a top-of-the-line walk-in refrigeration unit at the right size and the right price. With all the different options, it may be difficult to choose the right one for your application. Review the information above and consider what features are most important to you, then call SEMCO/SEMCOLD LLC and let us help you make this important decision. Remember also that all of our systems are fully customizable and can be designed to perfectly fit your needs.

Keeping produce fresh can be a challenge in the food industry. Enzymes released by the produce increase the degradation and ripening of the fruit. Over time, the fruit has increased respiratory activity that leads to softening and spoilage. After produce is picked, there begins a slow process of water loss that can make the fruit or vegetable less desirable. Lastly, microorganisms that lead to decay grow easily at warmer temperatures. Thus, one of the most important ways to maintain proper quality and freshness of food products is through proper cooling. At SEMCO/SEMCOLD LLC, we design and produce multiple cooling systems to function well with diverse produce.

Today we want to turn our attention to one of the most commonly used produce cooling methods: room cooling. Room cooling is a simple and effective cooling method that is great for a variety of different fruits and vegetables. However, it is not ideal for all produce. Let’s take a look at some of the limitations of room cooling.

A Common Cooling Method With Limitations

Room cooling is a common method to cool fruit after harvest. This method involves an insulated room with refrigeration units designed to create a cold environment. The produce placed inside the cold room will lower in temperature depending on the number, power, and placement of the refrigeration units. This method can be energy efficient depending on the design of the building and the efficiency of the units. At SEMCO/SEMCOLD LLC, we manufacture highly efficient cooling units for industrial scale cooling. Although this method can work well with already cooled produce or produce that does not need rapid cooling, it can be ineffective for warmer produce recently removed from the field or for produce that requires rapid cooling.

Produce That Is Unsuitable For Room Cooling

Room cooling isn’t right for all types of produce. The following types of produce should not be cooled with room cooling alone:

  • Asparagus
  • Broccoli
  • Brussel sprouts
  • Cantaloupe
  • Carrots
  • Cauliflower
  • Celery
  • Cherries
  • Corn
  • Cucumbers
  • Endive
  • Grapes
  • Leeks
  • Lettuce
  • Nectarines
  • Onions
  • Peaches
  • Peas in pods
  • Plums
  • Radishes
  • Spinach
  • Watermelon

Some of these vegetables and fruits have a high respiration rate, which need to be cooled rapidly to avoid degradation of the produce’s structure and nutrition. Produce with lower respiration rates do not always need to be quickly cooled to maintain its integrity.

Ice Cooling: Old Fashion and Effective For Rapid Cooling

A quick and efficient method to cool some foods is through ice cooling. Many types of produce, including asparagus, broccoli, cantaloupes, carrots, cauliflower, endive along with multiple other high-respiration produce, can be iced for quick cooling. Direct contact with ice does not cause damage to the produce because these have a stronger outer structure. Ice cooling requires a system to quickly produce and store clean ice with which to cool the produce.

Additional Rapid Cooling Methods For Delicate Produce

Some produce can be damaged by direct contact with ice, but also should not be room cooled. Some types of cooling methods that may be suitable for these types of produce include forced-air cooling and hydrocooling. Forced-air cooling utilizes fans that push cold air through the pallets of food and increase the exposure and cooling efficiency of food. Hydrocooling uses cooled water to draw the heat out of produce.

Although room cooling is an effective way to cool some produce, the above outlined methods are better suited to more rapidly cool produce that degrade quickly. SEMCO/SEMCOLD LLC has put together cooling and storage guides for a variety of produce and we recommend searching our archives if you are looking for additional information about a particular crop. Additionally, our experts are always happy to answer your cooling and storage questions and remember that SEMCO/SEMCOLD LLC’s systems are fully customizable and can be tailored exactly to customer specifications.

Providing fresh, tasty, and good-looking produce to consumers is an intensive process that doesn’t end at the moment of harvest. It’s important to take care of produce after it has been gathered but before it is shipped or purchased, ensuring the highest quality product and best competitive edge in today’s market.

Proper cooling is essential for any produce operation, but the type of cooling that you pick will depend on what type of food you are trying to preserve. There are many different types of cooling, and many different choices when it comes to keeping your fruits and vegetables fresh. In today’s article let’s take a look at the popular forced-air cooling method and the type of produce that is best suited for this method.

The Importance of Cooling Produce

First of all, it’s important to know why good cooling matters. As soon as fruits or vegetables are removed from the plant, they begin to lose freshness, and the heat that they have gathered while growing in the field or orchard can cause this degradation to accelerate. Proper cooling is absolutely essential to slow these natural processes as much as possible so that produce is still in great condition when it is delivered to the consumer. A cooling system can suppress respiratory activity in the cells of the plant, which causes produce to soften and become mushy; it also prevents wilting and water loss. Cooling systems can reduce the production of ethylene in fruits and vegetables, a chemical which causes produce to become overripe. Finally, cooler temperatures prevent the growth of microorganisms that produce decay, such as bacteria and mold.

Proper Cooling and Storage Increase Produce Value

SEMCO/SEMCOLD LLC knows that good cooling does more than just keep quality high. By increasing the amount of time that food can be stored, it allows growers to market their products days, weeks, or even months after the harvest has passed, eliminating the need to sell directly after harvest. This is beneficial for high-volume growers as well as producers that need a great degree of flexibility.

Forced Air Cooling

There are a number of cooling methods available to growers, including room cooling (where the produce is left in a refrigerated room) and hydrocooling (where the produce is cooled by ice and cold water), to name just a couple. However, this article will focus on forced-air cooling.

Forced-air cooling requires a refrigeration room, much like room cooling does—but unlike room cooling, fans are used to draw cold air through the produce, expediting the process. Forced-air cooling can be 75% to 90% more efficient than simple room cooling, allowing produce to be cooled much more rapidly and with less energy.

However, forced-air cooling can also lead to moisture evaporation, since moving air can carry water away from the produce. For this reason fans are typically turned off once the desired temperature is reached, ensuring that the fruits and vegetables do not dry out. Likewise, it is important to monitor and regulate humidity levels within the cooler.

Important Considerations for Forced-Air Cooling

When trying to decide whether to use forced-air cooling, the type of produce should be taken into account. Different foods have different storage requirements. For example, broccoli should be kept at near-freezing temperatures while in storage, but tomatoes cannot be kept in temperatures lower than 40 degrees. Forced-air cooling can be adjusted to accommodate a wide range of temperatures, but for food that needs to be kept somewhat warmer, room cooling may be sufficient. Forced-air cooling is generally the best choice for many foods that need to be kept cold but might be damaged when wet, preventing the use of hydrocooling.

Additionally, forced-air cooling works best with certain types of packaging. If the produce is on trays or in shallow boxes, so that air can circulate around it, then forced air cooling is a great choice. However, it loses its effectiveness if the fruits and vegetables are in sealed bins or large bags with limited airflow.

Best Produce for Forced-Air Cooling

There are many fruits and vegetables that respond well to forced air cooling. These include the following:

  • Apples
  • Pears
  • Berries (especially blackberries, blueberries, raspberries, and strawberries)
  • Cherries
  • Grapes
  • Nectarines
  • Peaches
  • Plums
  • Cantaloupe and other small melons
  • Broccoli
  • Eggplant
  • Squash
  • Tomatoes
  • Peppers
  • Cabbage
  • Cucumbers
  • Pea pods
  • Potatoes

Foods that cannot be effectively cooled by forced-air cooling include celery, corn, bananas, citrus fruits, lettuce, mushrooms, onions, and avocados to name just a few. For more information about cooling methods for specific types of produce make sure to visit our archives and search the crop you want more information about.

Forced-air cooling is an efficient and economical way to ensure long-term storage and high quality of fruits and vegetables. SEMCO/SEMCOLD LLC is a proud manufacturer of forced-air systems and similar cooling solutions. All of our systems are fully customizable and designed to best meet customer specs.

Producing a quality crop takes plenty of hard work, dedication, and commitment. In order to protect and preserve that quality produce, you need to use a cooling method post harvest that will help keep the food fresh. Using the correct cooling method for your crop will not only provide a tastier and more nutritious product for the consumer, it will also help crops to better survive the delivery journey. At SEMCO/SEMCOLD LLC, we can design a customized cooling system to fit your specific cooling needs, thus helping to keep crops chilled, preserved, and protected after harvest until they arrive at their final destination.

The Importance of Cooling Produce

Cooling produce quickly after harvest can reduce the field heat that crops experiences while being gathered, and it helps prepare items for storage and shipment. Cooling produce also allows growers to store and then sell their crops at a more marketable time in order for them to get the maximum value for their harvest.

Cooling crops in the appropriate manner helps protect the freshness and integrity of produce by:

  • Delaying the growth of molds and bacteria
  • Hindering water loss
  • Postponing the production of ethylene

Different Produce; Different Cooling Methods

The manner in which a crop is cooled can depend on a variety of factors. SEMCO/SEMCOLD LLC understands that different crops require different cooling methods, which is why we design personalized cooling units that fit our customers’ needs. Certain crops need to be cooled very quickly in order to stop the ripening process, while others can be allowed to reach lower temperatures slower. Economic restraints should also taken into account when designing a cooling unit, as some cooling processes will be much more expensive than others. While there are many different cooling methods, this article will focus on room cooling and what produce is best suited for room cooling.

What Is Room Cooling?

Room cooling is a method of bringing the temperature of produce down to an acceptable level by placing it in an insulated room that is cooled with refrigeration units. These units chill the air and keep the room at a consistently cold temperature. SEMCO/SEMCOLD LLC room cooling systems are very energy efficient and designed to the highest standards.

The Benefits of Room Cooling

Room cooling is a slower cooling method than other cooling methods, which works well for certain crops that don’t need rapid cooling. Room cooling can also be used to help store produce that has been pre-cooled by another cooling method. When used as storage for pre-cooled crops, smaller refrigeration units can be used to keep crops at the desired temperature.

Best Produce For Room Cooling

Produce well-suited to room cooling include the following:

  • Apples
  • Butter Beans & Snap Beans
  • Beets
  • Blueberries
  • Brambles
  • Cabbage
  • Eggplant
  • Okra
  • Peppers
  • Potatoes
  • Squash
  • Strawberries
  • Sweet Potatoes
  • Tomatoes
  • Turnips
  • Watermelon

With a room cooling system from SEMCO/SEMCOLD LLC, many items that are properly room cooled can last for months, such as apples, topped beets, cabbage, potatoes, sweet potatoes, and turnips. When produce is stored in cooling rooms, the produce containers should be stacked in order for air to circulate around the packaging. As mentioned above, other crops that have been cooled through rapid cooling methods can also be stored in room cooling units once they have reached the proper storage temperature.

Room Cooling Requirements

While room cooling is effective to help delay the growth of bacteria, slow the ripening process, and reduce water loss, there are other requirements besides temperature that need to be met in order for quality produce to be delivered fresh to consumers.

Maintaining the appropriate humidity levels (from 80-95% humidity) in the cooling rooms will help crops to retain their quality and freshness. The humidity rates should also be closely monitored using a hygrometer to ensure that they stay at optimal levels. Humidity rates that are too high will encourage bacteria growth, which is why sanitation is also very important for such crops. Meanwhile, humidity levels that are too low will dry out the produce.

Whatever your cooling needs may be, we at SEMCO/SEMCOLD LLC can manufacture and install a customized system that works for you, your crops, and your budget. Having the right cooling system can help save you money in the long run and allow you to get more out of your harvest.