Site icon SEMCO/SEMCOLD LLC

Facts and Statistics About Industrial Concrete

Concrete has been used industrially since Roman times. Although the technology was largely forgotten until the mid-18th century, concrete is now the most used man-made material in the world. This article will examine some facts and statistics regarding industrial concrete.

Where Does All of the Material for Industrial Concrete Come From?

The process of making industrial concrete starts with the quarrying of raw materials. Limestone, clay and on occasion shale are heated in a rotary kiln at a high temperature. This chemical reaction produces what is called a clinker, which is cooled, inspected and ground with another material, often gypsum. This product is packaged and shipped to be mixed with sand and aggregates to make a basic concrete. Where available, re-purposed waste materials from steel and electric production can be used to replace some of the cement components.

Composition and Properties of Industrial Concrete

By itself, industrial concrete handles compressive loads quite well. However, when it’s stretched in a tensile setting, the material easily ruptures. This is why in many industrial applications rebar or another reinforcement material is used.

Admixtures are also becoming common in large construction projects. Retarders, which come in many forms, help to slow the curing process. These are useful in applications where engineers don’t want one portion of concrete to start curing before another. When a stronger, lighter product is desired, air entraining agents are used. This also results in a more suitable material for climates where numerous freeze and thaw cycles occur.

Industrial Concrete Hydration: Going From Wet to Dry

The curing process for industrial concrete is called hydration, and depending on factors such as temperature, humidity, and the composition of the materials used, it can take up to several weeks for a finished slab to reach its ultimate strength. To properly cure, poured concrete typically needs to be cooled. This is in large part because the hydration process creates a chemical reaction that releases heat and that could damage the strength of the concrete if it is not cooled. At SEMCO/SEMCOLD LLC we offer various concrete cooling solutions to meet the needs of your project.

How Long Will Industrial Concrete Last?

The Pantheon, the world’s largest unreinforced concrete dome is still standing, almost exactly as it was when it was built some 2,000 years ago. The materials used in that structure are a bit different than those in common use today, so it’s good to take a look at a modern example as well. The Tunkhannock Creek Viaduct in Pennsylvania, completed in 1915, used some 167,000 cubic yards of cement, water and aggregates. Much of it was poured underground to create deep piers, and reinforcement materials were used throughout. The bridge is still standing today, more than 100 years later. At SEMCO/SEMCOLD LLC we understand the needs of projects of all scales and can provide a custom cooling solution to meet your needs.

Taking a Look at the Numbers

It seems as if the appetite for concrete is as strong as ever. In 2014, cement consumption increased by nearly 9.2 million metric tons in developed economies, of which North America was the primary constituent. In the USA, most recent figures show that cement and concrete contributed $10.2 billion to state revenue, and the industry as a whole employs some 490,691 persons. In 2014, the cost of Portland and masonry cement was approximately $98.50 per metric ton.

Concrete structures make for impressive works of architecture. Concrete is also the workhorse material of industrial, able to be used for a full spectrum of construction and industrial projects. After examining the above facts and figures, at SEMCO/SEMCOLD LLC we hope that you will have a new appreciation for the hard, concrete surfaces that people rely on every day.

Exit mobile version